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Abstract-Analysis of human interaction in a social gathering 
is of high interest in security and surveillance applications. It 
is also of psychological interest to study the interaction to get a 
better understanding of the participant behavior. This paper is an 
attempt to explore and analyze interactions among the individuals 
from a single calibrated camera. We are particularly interested in 
trajectory prediction. These predicted trajectories of individuals 
are then used in predicting personal space violation. Each 
individual, represented by a feature point in a 2.SD coordinate 
system, is tracked using Lucas-Kanade tracking algorithm. We 
use the linear cyclic pursuit framework to model this point 
motion. This model is used for short-term prediction of individual 
trajectory. We demonstrate these ideas on different types of data
sets. 
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I. INTRODUCTION 

Security and safety are among the major concerns in 
crowded public places such as airports, shopping malls or 
in any social gathering. Analyzing human activity at such 
crowded places is interesting and challenging at the same time. 
Crowd can be defined as a group of interacting individuals. 
This interaction is guided by an underlying set of rules that 
depends highly on the place under observation and the under
going event. For example, in a football match players interact 
according to their game rule and their strategy. There might 
be an obvious pattern in the crowd motion or it might look 
random in the extreme case. For example, in a marathon the 
participants follow a well defined pattern whereas in shopping 
malls it may be difficult to find any such obvious pattern. 

Various attempts have been made in the past to model and 
analyze the crowd motion. Zhan et al. [1] provide a survey of 
various crowd analysis methods employed in computer vision 
applications. They also discuss the crowd motion from the 
perspectives of sociology and psychology. The crowd analysis 
approaches can be categorized into two groups at the top 
level: holistic[1] and reductionist. Holistic approaches consider 
crowd as a single entity [1]-[4]. In [3], authors modeled the 
crowd movement as the fluid flow and use fluid dynamic 
concepts for abnormal flow detection. Andrade et al. [4] use 
optical flow to analyze crowd motion. They use unsupervised 
learning to detect abnormal crowd behavior. On the other hand, 
we refer reductionist approaches as those approaches which 
consider crowd as a group of individuals [ 5]-[7] and not to 

be very dense. The crowd behavior is studied by analyzing 
individuals and their interactions. So it is required to detect 
and track individuals. Kalman filtering has been a popular 
approach for tracking trajectories. Choi et al. [ 5] exploit the 
spatial distribution of the pedestrians with their pose and 
motion to identify the collective activity. They used extended 
Kalman filtering for tracking pedestrians. Robert et al. [6] use 
a Kalman filter for tracking pedestrians and then recognize 
human activities based on position and velocity of pedestrian. 
Ali and Terada [7] proposed a robust framework for multi 
human tracking based on Kalman filtering. 

Andrade et al. in [8] model an individual's motion in 
a crowd based on the social force model [9]. This model 
assumes that pedestrian motion is influenced by the other 
pedestrians and the environment. They model the motion by 
forces of attraction and repulsion acting on the pedestrian. 
Srikrishnan et al. [10] adopted the linear cyclic pursuit (LCP) 
[11] framework for modeling crowd motion. They used a 
sparse set of individuals from the crowd to model the motion 
in image plane. This model is used for predicting short term 
trajectories of individual agents. They have also shown the 
equivalence of LCP and crowd motion model based on social 
force model. Therefore we will use LCP for motion modeling 
in this paper. 

Our contribution in this direction is two fold. Firstly instead 
of tracking individuals in a image plane, we track them in 2.5D 
coordinate system, i.e. on a plane in world coordinate system. 
This helps in estimating true distances between individuals. 
Secondly we also predict the trajectories under LCP frame
work in order to analyze the individual behavior in the near 
future. This helps in predicting personal space violation which 
in turn can assist in security applications. 

The rest of the paper is organized as follows: Section II 
motivates and states the problem. Next section discusses the 
proposed method. Section IV describes the experimental setup 
and results, followed by conclusions in section V. 

II. MOTIVATION AND PROBLEM DEFINITION 

We are interested in exploiting the spatio-temporal distri
bution of the individuals in a gathering. By spatio-temporal 
distribution we refer to the positions of the individuals which 
change with the time. Consider a social gathering where people 
interact with each other. A socially important person is present 



in the gathering whose security is of concern. Is it possible 
to predict herlhis personal space violation? If yes, then it can 
help in taking timely security action. It requires modeling the 
motion and then prediction of the individuals' trajectories. 

III. METHODOLOGY 

We represent each agent (individual) by a feature point 
which are manually initialized. To get the true trajectories, 
we need 3D coordinates of these points. Since it is an ill
posed problem with a single camera, we estimate the 2.5D 
coordinates. With the assumption that all the feature points 
are on the same plane (which is parallel to the ground 
plane) and camera parameters known, 2.5D coordinates for 
the feature points can be estimated. The camera parameters 
can be estimated by camera calibration. Once we get the 2.5D 
coordinates, we track these feature points in a 2.5D coordinate 
system using the Lucas-Kanade tracking algorithm [1 5]. Once 
these trajectories of the feature points are known, we use 
the LCP framework to model the crowd motion. Finally we 
use this model for prediction of trajectories. Since agents are 
intelligent they can move on their own which leads to time 
varying motion dynamics. This requires updating the model 
parameters continuously and to predict short-term trajectories 
using the estimated model parameters. 

This section discusses the proposed method in detail. It 
includes introduction to linear cyclic pursuit followed by 
parameter estimation, prediction method, camera calibration 
and distance measurement. 

A. Linear Cyclic Pursuit 

We discuss the concept of the linear cyclic pursuit [11] in 
this section. In this model, each agent follows the weighted 
centroid of other agents' positions. In this paper, an agent 
refers to a feature point corresponding to an individual/vehicle 
which is being temporally followed. It could be a feature point 
on the head of the individual or on a vehicle. The method for 
extracting these feature points is discussed later. 

Consider a group of N agents in R2 i.e. (X, Y). The motion 
in each dimension is assumed to be independent of that in 
the other dimension. Therefore motion parameters can be es
timated for each dimension separately. Let the initial positions 
of all agents be known. Now consider the motion along the 
X dimension. Motion equations in the other dimension can be 
obtained similarly. For the ith agent, motion equation at time 

tj is given as: 

N-l 
Xi(tj) = kd L T)kX(Hk)N(tj) - Xi(tj)] (1) 

k=l 

where ki is the gain for the ith agent, T)k is the weight of 
the kth agent and (a)N denotes a mod N. Also T)k ?: 0 and 
L�=l T)k = 1. The parameters ki and T)k decide the agent's 
motion and hence are called motion parameters. Therefore in 
matrix form, the motion along the X direction becomes 

X(t) = AxX(t) (2) 

where X(t) = [XI(t) X2(t) ...... XN(t)]T and [ -kl klT)2 
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Since we are interested in short-term prediction, the analysis 
regarding the point of convergence and stability for the above 
motion model is not required. However a discussion on these 
issues can be found in [11]. Solving the first order differential 
equation along (2) the X and Y directions gives 

X(t) = expAxt X(O) 
Y(t) = expAyt Y(O) 

(4) 

where X(O) = [Xl(O) X2(O) ...... XN(O)]T and Y(O) = 

[YI(O) Y2(O)······YN(O)]T denote the initial positions of the 
agents. 

B. Motion parameter estimation and trajectory prediction 

To be able to predict the trajectories using the LCP model, 
we need to learn the parameter matrices Ax and Ay. Assume 
that we know the positions of all N agents for M consecutive 
frames in a video, where M > N. For the ith agent, M 

motion equations of the form (1) can be obtained and written 
in a matrix form as 

[ Xi(tl) ] [ XI(tl) X2(tl) 
Xi(t2) _ XI(t2) X2(t2) 
. . . . . .  . . . . . . . . . . .  . 

Xi(tM) Xl(tM) X2(tM) 

or equivalently, 

XN(tl) ] 
XN(t2) 
. . . . . .  

XN(tM) 

for all 1 :s; i :s; N, 

where iii 
aji = kiT)j . 

Similarly the motion equation for Y dimension is 

for all 1 :s; i :s; N 

[ali ] 
a2i 

aNi 
( 5) 

(6) 

(7) 

These set of equations are solved for iii and bi using the 
least squares method. Observe that fixed Ax and Ay would 
mean that motion dynamics is not changing which is a very 
restrictive condition. Since agents are intelligent, they can 
move on their own which means (4) is valid for a short time. 
Therefore we update ii and b with each incoming frame. Latest 
M frames are used for estimating the motion parameters. 

C. Camera Calibration 

As discussed earlier, we are interested in estimating 2.5D 
coordinates of the agents which are the feature points repre
senting individuals. The key assumption here is that feature 
points lie on a known plane parallel to the ground plane. Fig. 
1 gives the camera setup. The camera parameters are required 
to obtain the 2.5D coordintes as discussed in the next section. 



This requirement leads to camera calibration. In this section, 
we discuss the least-squares technique for camera calibration 
proposed by Tsai [12]. 

Let (X, Y, Z) be the world coordinate and (x, y) be the 
corresponding image coordinate. Let P be the transformation 
matrix which maps world coordinates to image coordinates, 
i.e. 

or equivalently, 

Pl2 Pl3 
P22 P23 
P32 P33 

(8) 

Z=H 

PI 

QI ow�--�������= 
X-Y Plane 

Fig. 1. Experimental setup: Camera center and world coordinate center are at 
Oc and Ow, respectively. PI-Ql and P2-Q2 represent two agents of height 
H. The distance between them i.e. d needs to be calculated. 

q=PQ (9) coordinates of PI is given as 

where q = [wx wy W]T and Q = [X Y Z I]T represent 
homogeneous coordinates in image plane and in 3D respec
tively. Since P is defined up to a scale factor, the condition 
P34 = I can be imposed. Consider that a set of 3D points 
(Xi, y;, Zi) and the corresponding image points (Xi, Yi) are 
known. To estimate the 11 parameters of matrix P, at least 6 
points are required. But the measurements (Xi, Yi, Zi, Xi, Yi) 
contain noise so a least squares solution is used with more 
number of measurements. 

D. Distance between two agents 

To exploit the spatial distribution of the agents, spatial 
distances among them are required. Consider the camera setup 
in Fig. 1 which is a common setup in surveillance applications. 
The camera is positioned at some height from the floor. 
Consider the world origin at Ow and camera center at Oc. The 
floor forms the X -Y plane of the world coordinate system. Let 
PI-QI and P2-Q2 be the two agents and the distance between 
them, i.e. d needs to be calculated. 

Let x be an image point. This image point maps to a ray 
in space which passes through the camera center. We need at 
least two points on this ray to get the ray equation. One is Oc 
which is known because camera is calibrated. The other point 
can be obtined by P+x where p+ is the pseudo-inverse of P. 
The point P+x will lie on the ray because P P+x = x [13]. 

Consider two feature points xl and x2 in the image plane 
corresponding to two individuals with A = p+XI and B = 
P+x2. The ray OcA can be written as 

X - Xc 
Xa - Xc 

Y - Yc 
Ya - Yc 

Z - Zc 
(10) 

Za - Zc 

where (xc, Yc, zc) and (xa, Ya, za) are the coordinates of Oc 
and A, respectively. The distance measurement is done under 
the assumption that all agents are of same height which is 
taken as the average height H equal to I60cm. The intersec
tions of these rays with the plane Z = H can be found out 
which gives the 2.5D coordinates of PI. For example, 2.5D 

H -z 
Xpl = ___ c 

(xa - xc) + Xc 
za - Zc 
H - Zc 

Ypl = --- (Ya - Yc) + Yc 
za - Zc 

Zpl = H 

(11) 

Similar calculations can be done for other agents. Once the 
agent locations are available, Euclidean distance between any 
two agents PI and P2 can be measured as 

d = V(XPI - Xp2)2 
+ (Ypl - YP2)2 (12) 

The next section discusses the experimentation under vari
ous scenarios. 

IV. EXPERIMENTS AND DISCUSSIONS 

The staged gathering videos are taken inside the lIT campus 
premise. The videos are created with the help of volunteers. 
The figures Fig. 2 and Fig. 3 show frames from the staged 
videos. In the first example, a set of agents approach an agent 
C standing in the center. They approach him one at a time. 
Let us consider that we are concerned with his security. An 
alert is sent to security instantaneously if someone violates his 
personal space. We would like to get an alert early enough to 
take timely security intervention if needed. To get an early 
alert, it is required to predict individual trajectories and then 
space violation. We are predicting agent locations for next 3 5-
40 frames which amounts to around 1.5 seconds. In another 
example as shown in figure Fig. 3, the group is diverging and 
then converging. The concerened person is also moving in this 
case. 

Individual participants in the video are represented as 
feature points in the image. To initialize the feature point, 
we define a rectangular region on the agent and apply the 
algorithm given by [14] to select a feature point in that region. 
We select the same region (for example agent's head ) for each 
agent to make sure that feature points are on the same plane 
parallel to the ground plane. These points are then tracked 
using the Lucas-Kanade tracking algorithm [1 5]. Once the 
image coordinates of these feature points are available, we 
find the 2.5D coordinates as discussed earlier. The prediction 



(a) Frame 35 (b) Frame 59 

(c) Frame 234 (d) Frame 334 

Fig. 2. Results of short-term prediction of space violation: Green lines indicates the data points used for estimating motion parameters. Red and Blue lines 
are the predicted trajectories in 2D and in 2.5D, respectively. Circle and ellipse represent the personal spaces in 2D and in 2.5D, respectively. 

(a) Frame 10 (b) Frame 48 

(c) Frame 258 (d) Frame 330 

Fig. 3. Another example of short-term prediction of space violation where the group is diverging first and then converging. 



is done in the 2.5D coordinate system with the third 
coordinate fixed as given in (11). 

The ellipses and circles in the figures represent the user 
defined personal spaces of the persons in 2.5D and in 2D, 
respectively. In 2.5D coordinate system, we define personal 
space as the area covered by the circle of a predefined radius 
with the agent's 2.5D point as the center on a plane parallel to 
ground plane. This circle in space is mapped to an ellipse on 
the image plane. In the image plane, personal space is simply 
defined as the circle with the feature point coordinate as the 
center. The personal space is violated when someone enters 
inside this circle. 

We also compare the prediction done in image plane with 
the prediction in 2.5D. In Fig. 2, the green trajectory rep
resents the locations of latest 1\11 frames used for motion 
parameter estimation. The red and blue represent the predicted 
trajectories in the image plane and in 2.5D, respectively. 
For visualization, 2.5D trajectories are projected back on the 
image plane using the calibration matrix P. Observe that the 
distance measurement is better in 2.5D than in 2D. In Fig. 
3a and 3b, the agent B at the back seems to be inside the 2D 
personal space region which indicates personal space violation. 
In reality it is not the case and is rightly depicted the in 2.5D 
coordinate system as proposed. 

V. CONCLUSION 

In this paper, we have presented a simple method for pre
dicting evolution of agents by exploiting the spatio-temporal 
distribution of the agents. We track agents in a 2.5D coor
dinate system instead of the image plane. This gives a better 
judgement of the locations of the agents. Given these locations, 
we use linear cyclic pursuit based motion model to represent 
individual motion and hence the trajectory. We analyse the 
predicted trajectories and attempt to predict the security threat 
to a person. 
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